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Superconductors with topological order
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Abstract. We propose a mechanism of superconductivity in which the order of the ground state does not
arise from the usual Landau mechanism of spontaneous symmetry breaking but is rather of topological
origin. The low-energy effective theory is formulated in terms of emerging gauge fields rather than a
local order parameter and the ground state is degenerate on topologically non-trivial manifolds. The
simplest example of this mechanism of superconductivity is concretely realized as global superconductivity
in Josephson junction arrays.

PACS. 11.10.-z Field theory – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and
bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid,
etc.)

1 Introduction

The discovery of the fractional quantum Hall [1] effect has
revealed the existence of a new state of matter character-
ized by a new type of order: topological order [2]. Topolog-
ical order is a particular type of quantum order describ-
ing zero-temperature properties of a ground state with a
gap for all excitations. Its hallmarks are the degeneracy
of the ground state on manifolds with non-trivial topol-
ogy, and excitations with fractional spin and statistics,
called anyons [3]. The long-distance properties of these
topological fluids are described by Chern-Simons field the-
ories [4] with compact gauge group, which break P- and
T-invariance. Other examples of P- and T-breaking topo-
logical fluids are given by chiral spin liquids [5].

After Laughlin’s discovery of topological quantum flu-
ids, it was conjectured that a similar mechanism, based on
anyon condensation, could be at the origin of high-Tc su-
perconductivity [3]. Unfortunately, there is no evidence of
the associated broken P- and T-invariance in the high-Tc

materials.
Here we propose a superconductivity mechanism which

is based on a topologically ordered ground state rather
than on the usual Landau mechanism of spontaneous
symmetry breaking. Contrary to anyon superconductiv-
ity it works in any dimension and it preserves P- and
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T-invariance. In particular we will discuss the low-energy
effective field theory, what would be the Landau-Ginzburg
formulation for conventional superconductors.

Topologically ordered superconductors have a long-
distance hydrodynamic action which can be entirely for-
mulated in terms of generalized compact gauge fields, the
dominant term being the topological BF action.

BF theories are topological theories that can be defined
on manifolds Md+1 of any dimension (here d is the number
of spatial dimensions) and play a crucial role in models of
two-dimensional gravity [6]. In [7] we have shown that
the BF term also plays a crucial role in the physics of
Josephson junction arrays.

The BF term [8] is the wedge product of a p-form B
and the curvature dA of a (d − p) form A:

SBF =
k

2π

∫
Md+1

Bp ∧ dAd−p,

where k is a dimensionless coupling constant. This can
also be written as

SBF =
k

2π

∫
Md+1

Ad−p ∧ dBp. (1)

The integration by parts does not imply any surface term
since we will concentrate on compact spatial manifolds
without boundaries and we require that the fields go to
pure gauge configuration at infinity in the time direc-
tion. Indeed this action has a generalized Abelian gauge
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symmetry under the transformation

B → B + η,

where η is a closed p form: dη = 0. Gauge transformations:

A → A + ξ,

with ξ a closed (d− p) form instead, change the action by
a surface term. This, however vanishes with the boundary
conditions we have chosen.

Here we will be interested in the special case where A1

is a 1-form and, correspondingly, Bd−1 is a (d − 1)-form:

SBF =
k

2π

∫
Md+1

A1 ∧ dBd−1. (2)

In the special case of (3+1) dimensions, B is the well-
known Kalb-Ramond tensor field Bµν [9].

In the application to superconductivity, the conserved
current j1 = ∗dBd−1 represents the charge fluctuations,
while the generalized current jd−1 = ∗dA1 describes the
conserved fluctuations of (d− 2)-dimensional vortex lines.
As a consequence, the form Bd−1 must be considered as
a pseudo-tensor, while A1 is a vector, as usual. The BF
coupling is thus P- and T-invariant.

The low-energy effective theory of the superconductor
can be entirely expressed in terms of the generalized gauge
fields A1 and Bd−1. The dominant term at long distances
is the BF term; the next terms in the derivative expansion
of the effective theory are the kinetic terms for the two
gauge fields (for simplicity of presentation we shall assume
relativistic invariance), giving:

STM =
∫

Md+1

−1
2e2

dA1 ∧ ∗dA1 +
k

2π
A1 ∧ dBd−1

+
(−1)d−1

2g2
dBd−1 ∧ ∗dBd−1, (3)

where e2 and g2 are coupling constants of dimension
m−d+3 and md−1 respectively.

The BF-term is the generalization to any number of
dimensions of the Chern-Simons mechanism for the topo-
logical mass [10]. To see this let us now compute the equa-
tion of motion for the two forms A and B:

1
g2

d ∗ dBd−1 =
k

2π
dA1, (4)

and
1
e2

d ∗ dA1 =
k

2π
dBd−1. (5)

Applying d∗ on both sides of (4) and (5) we obtain

d ∗ d ∗ dA1 − ke2

2π d ∗ dBd−1 = 0,

d ∗ d ∗ dBd−1 − kg2

2π d ∗ dA1 = 0. (6)

The expression ∗d∗ is proportional to δ, the adjoint of
the exterior derivative [11]. Substituting d ∗ dBd−1 and

d∗dA1 in (6) with the expression coming from (4) and (5)
we obtain

(
∆ + m2

)
dA1 = 0,(

∆ + m2
)
dBd−1 = 0, (7)

where ∆ = dδ (when acting on an exact form) and
m = keg

2π is the topological mass. This topological mass
plays the role of the gap characterizing the superconduct-
ing ground state. Note that the gap arises here from a
topological mechanism and not from a local order param-
eter acquiring a vacuum expectation value. Equations (4)
and (5) tell us that charges are sources for vortex line
currents encircling them and vice versa. This is the cou-
pling between charges and vortices at the origin of the
gap. A related mechanism for topological mass generation
in (3+1)-dimensional gauge theories is the generalization
of the Schwinger mechanism proposed in [12].

Let us now consider the special case of (2+1) dimen-
sions (d = 2). In this case also B becomes a (pseudo-
vector) 1-form and, correspondingly the BF term reduces
to a mixed Chern-Simons term. This can be diagonalized
by a transformation A = a+b

2 , B = a − b, giving

SBF (d = 2) =
k

4π

∫
a ∧ da − k

4π

∫
b ∧ db. (8)

The result is a doubled Chern-Simons model for gauge
fields of opposite chirality. This action, including its non-
Abelian generalization with kinetic terms was first con-
sidered in [13]. It is the simplest example of the class
of P- and T-invariant topological phases of strongly cor-
related (2+1)-dimensional electron systems considered
in [14]. Indeed, the BF term is the natural generalization
of such doubled Chern-Simons models to any dimension.
Doubled (or mixed) Chern-Simons models are thus partic-
ular examples in two spatial dimensions of a wider class
of P- and T-invariant topological fluids that have a super-
conducting phase. These fluids are described by the topo-
logical BF theory with compact support for both gauge
fields.

Topological BF models provide also a generalization
of anyons to arbitrary dimensions. While in (2+1) dimen-
sions fractional statistics arises from the representations
of the braid group, encoding the exchange of particles, in
(3+1) dimensions it arises from the adiabatic transport of
particles around vortex strings and, in (d+1) dimensions,
from the motion of an hypersurface Σh around another
hypersurface Σd−h. The relevant group in this case is the
motion group and the statistical parameter is given by
2π
k h(d − h), where k is the BF coupling constant [15].

Let us now illustrate the mechanism of superconduc-
tivity. To this end we shall from now on consider only
rational k = k1

k2
with ki integers, and specialize to man-

ifolds Md+1 = Md × R1, with R1 representing the time
direction.

The compactness of the gauge fields allows for the pres-
ence of topological defects, both electric and magnetic.
The electric topological defects couple to the form A1 and
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are string-like objects described by a singular closed 1-
form Q1. Magnetic topological defects couple to the form
Bd−1 and are closed (d − 1)-branes described by a singu-
lar (d− 1)-dimensional form Ωd−1. These forms represent
the singular parts of the field strengths dA1 and dBd−1,
allowed by the compactness of the gauge symmetries [16],
and are such that the integral of their Hodge dual over
any hypersurface of dimensions d and 2, respectively, is
2π times an integer as can be easily derived using a lattice
regularization. Contrary to the currents j1 and jd−1, which
represent charge- and vortex-density waves, the topologi-
cal defects describe localized charges and vortices. In the
effective theory these have structure on the scale of the
ultraviolet cutoff.

We will not discuss here the conditions for the con-
densation of topological defects, but we will show, instead
that the phase of electric condensation describes a super-
conducting phase in any dimension. A detailed analysis
would require the use of an ultraviolet regularization. Here
we will present a formal derivation implying the ultravio-
let regularization. A detailed derivation on the lattice will
follow in a forthcoming publication [17].

In the phase in which electric topological defects con-
dense (while magnetic ones are dilute) the partition func-
tion requires a formal sum also over the form Q1

Z =
∫ DADBDQ

× exp
[
i k
2π

∫
Md+1

(A1 ∧ dBd−1 + A1 ∧ ∗Q1)
]
. (9)

Let us now compute the expectation value of the ’t Hooft
operator, 〈LH〉, which represents the amplitude for creat-
ing and separating a pair of vortices with fluxes ±φ:

〈LH〉 = 1
Z

∫ DADBDQ

× exp
[
i k
2π

∫
Md+1

(A1 ∧ dBd−1 + A1 ∧ ∗Q1)

+ i k
2π φ

∫
Sd−1

Bd−1

]
. (10)

Using Stokes’ theorem we can rewrite
∫

Sd−1

Bd−1 =
∫

Sd

dBd−1, (11)

where the surface Sd is such that ∂Sd ≡ Sd−1 and repre-
sents a compact orientable surface on Md. Inserting (11)
in (10) and integrating over the field A we obtain:

〈LH〉 ∝ ∫ DBDQ δ (dBd−1 + ∗Q1)

× exp
[
i k
2π φ

∫
Sd

dBd−1

]
. (12)

Integrating over B gives then:

〈LH〉 =∝
∫

DQ exp
[
−i

k

2π
φ

∫
Sd

∗Q1

]
. (13)

The Poisson summation formula implies finally that the ’t
Hooft loop expectation value vanishes for all flux strengths
φ different from

φ

k2
=

2π

k1
n n ∈ N. (14)

This is nothing else than the Meissner effect, illustrat-
ing that the electric condensation phase is superconduct-
ing. Indeed, the electric condensate carries k1 fundamental
charges of unit 1/k2 as is evident from (9), and corre-
spondingly vortices must carry an integer multiple of the
fundamental fluxon 2π/(k1/k2). All other vorticities are
confined: in this purely topological long-distance theory
the confining force is infinite; including the higher order
kinetic terms (3) and the UV cutoff one would recover a
generalized area law.

Another way to see this is to compute the current
induced by an external electromagnetic field Aext. The
corresponding coupling is

∫
Md+1

Aext ∧ (∗j1 + ∗Q1) ∝∫
Md+1

Aext ∧ (dBd−1 + ∗Q1). Since Aext can be entirely
reabsorbed in a redefinition of the gauge field A1, the
induced current vanishes identically, jind = 0. This is
just the London equation in the limit of zero penetration
depth. Including the higher-order kinetic terms for the
gauge fields and the UV cutoff one would again recover
the standard form of the London equation.

Associated with the confinement of vortices there is a
breakdown of the original U(1) matter symmetry under
transformations A1 → A1 +dλ. To see this let us consider
the effect of such a transformation on the partition func-
tion (9) with an electric condensate. Upon integration by
parts, the exponential of the action acquires a multiplica-
tive factor

exp i
k1

2πk2

(∫
Md,t=+∞

λ ∧ ∗Q1 −
∫

Md,t=−∞
λ ∧ ∗Q1

)
.

(15)
Assuming a constant λ, we see that the only values for
which the partition function remains invariant are

λ = 2π n
k2

k1
, n = 1 . . . k1, (16)

which shows that the global symmetry is broken from U(1)
to Zk1 . Note that this is not the usual Landau mechanism
of spontaneous symmetry breaking. Indeed, there is no lo-
cal order parameter and the order is characterized rather
by the expectation value of non-local, topological opera-
tors.

The hallmark of topological order is the degeneracy of
the ground state on manifolds with non-trivial topology
as shown by Wen [2]. In (2+1) dimensions the degeneracy
for the mixed Chern-Simons term was proven in [18] for
the case of integer coefficient k of the Chern-Simons term.

The degeneracy of the ground state of the BF theory
on a manifold with non-trivial topology was proven in [19]
in (3+1) dimensions. This result can be generalized to
compact topological BF models in any number of dimen-
sions [15]. Consider the model (1) with k = k1

k2
on a man-

ifold Md × R1, with Md a compact, path-connected, ori-
entable d-dimensional manifold without boundaries. The
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degeneracy of the ground state is expressed in terms of the
intersection matrix Mmn [20] with m, n = 1....Np and Np

the rank of the matrix, between p-cycles and (d−p)-cycles.
Np corresponds to the number of generators of the two ho-
mology groups Hp(Md) and Hd−p(Md) and is essentially
the number of non-trivial cycles on the manifold Md. The
degeneracy of the ground state is given by |k1k2M |Np ,
where M is the integer-valued determinant of the link-
ing matrix. In our case p = (d − 1) and the degeneracy
reduces to

|k1k2M |Nd−1. (17)

In this paper we have derived a superconductivity mech-
anism which is not based on the usual Landau theory of
spontaneous symmetry breaking. Our considerations here
focused on the low-energy effective theory in order to ex-
pose the physical basis of the topological superconduc-
tivity mechanism. It is however crucial to stress that the
simplest example (k = 1) of this type of topological super-
conductivity is concretely realized as the global supercon-
ductivity mechanism in planar Josephson junction arrays,
as we have shown in [7]. Naturally, it would be most in-
teresting to find examples of devices or materials realizing
this superconductivity mechanism with more complex de-
generacy patterns. Planar Josephson junction arrays with
pertinent charge and magnetic frustration seem to be an
interesting candidate [21] to realize topological supercon-
ductivity with rational k; furthermore, the existence of
such non-conventional superconductors is also supported
by purely algebraic considerations [22].
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